Deformations and Geometric Cosets *

نویسنده

  • P. M. Petropoulos
چکیده

I review some marginal deformations of SU(2) and SL(2, R) Wess–Zumino–Witten models , which are relevant for the investigation of the moduli space of NS5/F1 brane configurations. Particular emphasis is given to the asymmetric deformations, triggered by electric or magnetic fluxes. These exhibit critical values, where the target spaces become exact geometric cosets such as S 2 ≡ SU(2)/U(1) or AdS 2 ≡ SL(2, R)/U(1) space. I comment about further generalizations towards the appearance of flag spaces as exact string solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Axial-Vector Duality as a Gauge Symmetry and Topology Change in String Theory

Lines generated by marginal deformations of WZW models are considered. The Weyl symmetry at the WZW point implies the existence of a duality symmetry on such lines. The duality is interpreted as a broken gauge symmetry in string theory. It is shown that at the two end points the axial and vector cosets are obtained. This shows that the axial and vector cosets are equivalent CFTs both in the com...

متن کامل

طراحی و توسعه یک روش تلفیقی تناظریابی ناحیه ای و عارضه مبنای جدید برای توجیه نسبی در فتوگرامتری برد کوتاه

By far, many stereo-matching techniques have been successfully proposed and applied in digital aerial photogrammetry. However, due to some problems such as large parallaxes, occlusions, geometric deformations, and repetitive patterns in convergent close range images, these methods may not be applicable to the same level of success as that of aerial imagery. In order to overcome these shortcomin...

متن کامل

Algebraic and Geometric Isomonodromic Deformations

Using the Gauss-Manin connection (Picard-Fuchs differential equation) and a result of Malgrange, a special class of algebraic solutions to isomonodromic deformation equations, the geometric isomonodromic deformations, is defined from “families of families” of algebraic varieties. Geometric isomonodromic deformations arise naturally from combinatorial strata in the moduli spaces of elliptic surf...

متن کامل

A Painting Interface for Interactive Surface Deformations

A long-standing challenge in geometric modeling is providing a natural, intuitive interface for making local deformations to 3D surfaces. Previous approaches have provided either interactive manipulation or physical simulation to control surface deformations. In this paper, we investigate combining these two approaches with a painting interface that gives the user direct, local control over a p...

متن کامل

A Super - Element Based on Finite Element Method for Latticed Columns Computational Aspect and Numerical Results

This paper presents a new super-element with twelve degrees of freedom for latticed columns. This elements is developed such that it behaves, with an acceptable approximation, in the same manner as a reference model does. The reference model is constructed by using many Solid elements. The cross section area, moments of inertia, shear coefficient and torsoinal rigidity of the developed new elem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004